sábado, 10 de mayo de 2014

Semana 13 - Postulados de la Relatividad especial y sus consencuencias. Equivalencia entre la masa y la energía y sus consencuencias prácticas. Evolución de la ciencia.

SEMANA13
SESIÓN
37
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
6.7 Postulados de la relatividad especial y sus consecuencias.


Aprendizajes esperados del grupo
Conceptuales
  • Comprende algunas implicaciones de la constancia de la velocidad de la luz.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagaciones Bibliográficas acerca del tema.
Desarrollo del proceso
FASE DE APERTURA
-          El Profesor   solicita a los alumnos que completen las preguntas siguientes:
-          ¿Cuáles fueron los postulados de Albert Einstein?
¿Qué dice la teoría de la relatividad especial?
¿Cuáles son los postulados de la relatividad especial?
¿Cuáles son los modelos matemáticos que representan los postulados?
¿En qué consiste la equivalencia entre la masa y la energía?
¿Cuáles son las consecuencias prácticas de la equivalencia masa-energía?
¿Cómo han evolucionado las ciencias físicas?
5
1
6
2
4
3
No existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.
Postulados de la relatividad especial
1. Primer postulado (principio de relatividad)
La observación de un fenómeno físico por más de un observador inercial debe resultar en un acuerdo entre los observadores sobre la naturaleza de la realidad.
2. Segundo postulado (invariabilidad de c)
La Luz siempre se propaga en el vacío con una velocidad constante c que es independiente del estado de movimiento del cuerpo emisor.
E = mc^2 \,\!
La equivalencia entre la masa y la energía dada por la expresión de la teoría de la relatividad de Einstein.
E = mc^2 \,\!
indica que la masa conlleva una cierta cantidad de energía aunque la primera se encuentre en reposo, concepto ausente en mecánica clásica, esto es, que la energía en reposo de un cuerpo es el producto de su masa por su factor de conversión (velocidad de la luz al cuadrado), o que cierta cantidad de energía de un objeto en reposo por unidad de su propia masa es equivalente a la velocidad de la luz al cuadrado:
E/m=c^2 \,\!
E/m=c^2= (299\ 792\ 458\quad \mbox{m/s})^2 =
89\ 875\ 517\ 873\ 681\ 764\quad \mbox{J/kg}
Equivalencia entre masa y energía fue demostrada en el laboratorio en el año 1932, y dio lugar a impresionantes aplicaciones concretas en el campo de la física (tanto la fisión nuclear como la fusión termonuclear son procesos en los que una parte de la masa de los átomos se transforma en energía).
Con esta teoría se obtienen órbitas planetarias muy similares a las que se obtienen con la mecánica de Newton. Uno de los puntos de discrepancia entre ambas, la anormalmente alargada órbita del planeta Mercurio, que presenta un efecto de rotación del eje mayor de la elipse (aproximadamente un grado cada diez mil años) observado experimentalmente algunos años antes de enunciarse la teoría de la relatividad, y no explicado con las leyes de Newton, sirvió de confirmación experimental de la teoría de Einstein.
La ciencia y su rápido desarrollo plantean a las sociedades importantes dilemas éticos y morales que aun no han sido resueltos, incluso correspondencia entre el adelanto científico y una teoría filosófica con relación a estos avances.
-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
-          FASE DE DESARROLLO
Calcular la energía producida por la masa de uranio, en función de la ecuación de Albert Einstein:
E = mC2
(En la fórmula anterior donde la velocidad de la luz ©se expresa en m/s, la energía € en J y la masa (m) en kg).
Equipo
Masa en gramos de uranio
Energía Producida
Joule
1
1g
E=1(299.792.458 m/s)2= 8.987551787x1016
2
2g
E= 2(299.792.458 m/s)2=  1.79751035717
3
3g
E= 3(299.792.458 m/s)2=
269630.37059x1017
4
 4 g
E=4( 299.792.458 m/s)2
= 3.5950207115x1017
5
5g
E=5(299.792.458 m/s)2=4.493775894x1017
6
6g
E=6(299.792.458 m/s)2=5.392531072x1017
El Profesor  presenta a los alumnos el video “El modelo cuántico”, los alumnos
              Elaboran un resumen de acuerdo a las indicaciones del Profesor.
-          El Profesor solicita a los alumnos que se numeren en forma consecutiva, y de acuerdo a su número dibujen el modelo atómico del elemento  empleando el modelo considerando los parámetros cuánticos s, p d, f.
El método permitirá a los alumnos, tener un panorama de los temas que se desarrollaran durante el curso.(Que, cuando, como y donde)
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.


 MARTES
SEMANA13
SESIÓN
38
Física 2
UNIDAD 6: FÍSICA Y TECNOLOGÍA CONTEMPORÁNEAS
contenido temático
6.8 Equivalencia entre la masa y la energía y sus consecuencias prácticas.
6.9 Evolución de la ciencia.


Aprendizajes esperados del grupo
Conceptuales
  • Conoce la interpretación relativista de la relación masa-energía y su aplicación en la producción de energía nuclear.
Procedimentales
·       Elaboración de indagaciones bibliográficas y resúmenes.
·       Presentación en equipo
Actitudinales
  • Cooperación, responsabilidad respeto y tolerancia, contribuirá al trabajo en un ambiente de confianza.
Materiales generales
Computo:
-          PC, Conexión a internet
De proyección:
-          Cañón Proyector
Programas:
-           Moodle, Google docs, correo electronico, Excel, Word, Power Point.
Didáctico:
-          Indagación bibliográfica sobre la evolución de la ciencia.
Desarrollo del proceso
FASE DE APERTURA
 El Profesor solicita a los alumnos  desarrollar el tema evolución de la Ciencia, de acuerdo a los ciclos:
Evolución  de la  ciencia
Preguntas
De la Prehistoria al siglo XVII
Del  Siglo
XVII-XIX
Siglo
XIX
Siglo
XX
Siglo
XXI
Equipo
6
2
1
3
5
Respuesta
En el siglo XVI nacieron algunos personajes como Copérnico, Stevin, Cardano, Gilbert, Brahe, pero fue Galileo quien, hasta principios del siglo XVII, impulsó el empleo sistemático de la verificación experimental y la formulación matemática de las leyes físicas. Galileo descubrió la ley de la caída de los cuerpos y del péndulo, se le puede considerar como el creador de la mecánica, también hizo las bases de la hidrodinámica, cuyo estudio fue continuado por su discípulo Torricelli que fue el inventor del barómetro, el instrumento que más tarde utilizó Pascal para determinar la presión atmosférica. Pascal precisó el concepto de presión en el seno de un líquido y enunció el teorema de transmisión de las presiones. Boyle formuló la ley de la compresión de los gases (ley de Boyle-Mariotte).
En óptica, René Descartes estableció la ley de la refracción de la luz, formuló una teoría del arco iris y estudió los espejos esféricos y las lentes. Fermat enunció el principio de la óptica geométrica que lleva su nombre, y Huygens, a quién también se le deben importantes contribuciones a la mecánica, descubrió la polarización de la luz, en oposición a Newton, para quién la luz es una radiación corpuscular, propuso la teoría ondulatoria de la luz. Hooke estudió las franjas coloreadas que se forman cuando la luz atraviesa una lámina delgada; también, estableció la proporcionalidad.
A finales del siglo XVII la física comienza a influir en el desarrollo tecnológico permitiendo a su vez un avance más rápido de la propia física.
El desarrollo instrumental (telescopios, microscopios y otros instrumentos) y el desarrollo de experimentos cada vez más sofisticados permitieron obtener grandes éxitos como la medida de la masa de la Tierra en el experimento de la balanza de torsión.
También aparecen las primeras sociedades científicas como la Royal Society en Londres en 1660 y la Académie des sciences en París en 1666 como instrumentos de comunicación e intercambio científico, teniendo en los primeros tiempos de ambas sociedades un papel prominente las ciencias físicas.
En el siglo XVII Galileo quien, hasta principios del siglo XVII, impulsó el empleo sistemático de la verificación experimental y la formulación matemática de las leyes físicas. Galileo descubrió la ley de la caída de los cuerpos y del péndulo, se le puede considerar como el creador de la mecánica, también hizo las bases de la hidrodinámica.
René Descartes estableció la ley de la refracción de la luz, formuló una teoría del arco iris y estudió los espejos esféricos y las lentes. Fermat enunció el principio de la óptica geométrica.
A finales del siglo XVII la física comienza a influir en el desarrollo tecnológico permitiendo a su vez un avance más rápido de la propia física. A partir del Siglo XVIII Boyle y Young desarrollaron la termodinámica.
La investigación física de la primera mitad del siglo XIX estuvo dominada por el estudio de los fenómenos de la electricidad y el magnetismo. Coulomb, Luigi Galvani, Faraday, Ohm y muchos otros físicos famosos estudiaron los fenómenos dispares y contraintuitivos que se asocian a este campo
La investigación física de la primera mitad del siglo XIX estuvo dominada por el estudio de los fenómenos de la electricidad y el magnetismo. Coulomb, Luigi Galvani, Faraday, Ohm y muchos otros físicos famosos estudiaron los fenómenos dispares y contraintuitivos que se asocian a este campo. En 1855 Maxwell unificó las leyes conocidas sobre el comportamiento de la electricidad y el magnetismo en una sola teoría con un marco matemático común mostrando la naturaleza unida del electromagnetismo. Los trabajos de Maxwell en el electromagnetismo se consideran frecuentemente equiparables a los descubrimientos de Newton sobre la gravitación universal Una de las predicciones de esta teoría era que la luz es una onda electromagnética. Este descubrimiento de Maxwell proporcionaría la posibilidad del desarrollo de la radio unas décadas más tarde por Heinrich Hertz en 1888.
El desarrollo de la teoría de la relatividad y el comienzo de la mecánica cuántica.
En 1905 Albert Einstein, formuló la teoría de la relatividad especial, en la cual el espacio y el tiempo se unifican en una sola entidad, el espacio-tiempo. La relatividad formula ecuaciones diferentes para la transformación de movimientos cuando se observan desde distintos sistemas de referencia inerciales a aquellas dadas por la mecánica clásica. Ambas teorías coinciden a velocidades pequeñas en relación a la velocidad de la luz
La física sigue enfrentándose a grandes retos, tanto de carácter práctico como teórico, a comienzos del siglo XXI. El estudio de los sistemas complejos dominados por sistemas de ecuaciones no lineales, tal y como la meteorología o las propiedades cuánticas de los materiales que han posibilitado el desarrollo de nuevos materiales con propiedades sorprendentes. A nivel teórico la astrofísica ofrece una visión del mundo con numerosas preguntas abiertas en todos sus frentes, desde la cosmología hasta la formación planetaria. La física teórica continúa sus intentos de encontrar una teoría física capaz de unificar todas las fuerzas en un único formulismo en lo que sería una teoría del todo. Entre las teorías candidatas debemos citar a la teoría de supercuerdas.
-          Los alumnos discuten en equipo y presentan sus respuestas y se lleva a cabo una discusión extensa.
El método permitirá a los alumnos, tener un panorama de los temas que se desarrollaran durante el curso de la ciencia.(Que, cuando, como y donde)    
 FASE DE DESARROLLO
1.- Simulación del experimento de Michelson-Morley y otro simulador:
http://www.elortegui.org.es/ciencia/joomla/datos/2BACHFIS/05moderna.html
Equipo
Angulo de rotación (grados)
Imagen   en el simulador
1
0
2
30
3
60
4
90
5
120
6
150
Medición de la velocidad de la luz, cambiando el ángulo de rotación en el disco del experimento de Michelson-Morley.
2.- Dilatación del tiempo. "Simulador de dilatación relativista del tiempo"
http://www.walter-fendt.de/ph14s/timedilation_s.htm
Una nave espacial está volando a una distancia de 5 horas-luz de la Tierra hasta el planeta Plutón. La velocidad puede ser regulada con el botón superior.
La aplicación demuestra que el reloj de la nave va más lento que los dos relojes del sistema en el que la Tierra y Plutón están en reposo.
Equipo
Velocidad de la luz
Imagen   en el simulador
1
.4 C
2
.5C
3
.6C
4
.7C
5
.8C
6
.9C
-          http://avibert.blogspot.com/2010/08/relatividad-especial-teoria-de-albert.html
FASE DE CIERRE
    Al final de las presentaciones, se lleva a cabo una discusión extensa, en la clase, de lo  que se aprendió y aclaración de dudas por parte del Profesor.                    
Actividad Extra clase:
Los alumnos llevaran la información  a su casa y los que tengan computadora e internet, indagaran los temas de la siguiente sesión, de acuerdo al cronograma.
               Los alumnos que tengan PC y Programas elaboraran su informe, empleando el                   programa  Word, para registrar los resultados.
Evaluación
Informe en Power Point de la actividad.
    Contenido:
    Resumen de la Actividad.

 VIERNES
Recapitulación 13
Resumen del martes y jueves
Lectura del resumen por el equipo 1
Aclaración de dudas
Registro de asistencia
Equipo
1
2
3
4
5
6
Resumen
El día martes en la clase de física entregamos las indagaciones como cada semana, también realizamos una actividad en la cual teníamos que calcular la equivalencia de la masa y la equivalencia del plutonio, el día jueves no hubo clase de física y eL día viernes investigamos sobre la evolución de la física en el siglo XIX.
El martes revisamos las indagaciones y realizamos una actividad en la calculamos lo equivalente de la masa del plutonio y el jueves no tuvimos clase porque el profesor se fue a la caseta de las ciencias y hoy hicimos la recapitulación.
El día martes se revisaron las indagaciones de  semana sobre los postulados de la relatividad y la equivalencia entre la masa y le energía y calculamos la equivalencia de la masa y energía del plutonio.
El día jueves fuimos a una entrevista de jóvenes a la investigación, el día viernes hicimos la actividad del jueves en donde indagamos sobre la evolución de la  física en la ciencia en el siglo XX.
El día martes se revisaron las indagaciones de la semana  sobre la relatividad y realizamos la actividad de equivalencia de masa y energía. Y el día jueves  fuimos  a entrevista  de jóvenes a la investigación, y el día viernes se realizo la recapitulación.
El martes checamos las indagaciones sobre relatividad e hicimos una actividad sobre la  equivalencia de masa y el el jueves no tuvimos clase ya que el profesor asistió a una entrevista de alumnos a la investigación, y el día viernes realizamos la recapitulación de los dos días de clases.

No hay comentarios:

Publicar un comentario